Skip to content

Psychoweb

Ecran diminué  Ecran large  Augmenter la taille de la police  Diminuer la taille de la police  Taille par défaut 
Chemin :    Accueil arrow News arrow Derniers Articles arrow Psychologie du Développement arrow Acquisition de la chaîne numérique 2 - chaîne écrite
Acquisition de la chaîne numérique 2 - chaîne écrite Convertir en PDF Version imprimable Suggérer par mail

Section : articles, Catégorie : psychologie du developpement

Proposé par Stephane Desbrosses, le 14-12-2007



Acquisition de la suite numérique chez l'enfantLa chaîne numérique écrite a en fait été très peu étudiée. Pour la saisir, il faut comprendre la notion de Notation positionnelle : la valeur du chiffre dépend de sa position (dans 21, le 2 signifie 20 et non 2, pour les langues occidentales). On note que plus la correspondance oral/écrit est régulière, plus l’apprentissage est facile, ce qui met en évidence des différences interculturelles.

Différences linguistiques et transcodage


Une comparaison inter langue peut être faite : Pour certaines langues asiatiques, les mots-nombres sont juxtaposés (exemple : Chinois) : Shi Yi = « Dix un » = 11 ; Er Shi San « deux dix trois » = 23. Les langues asiatiques rendent la base dix transparente. Miura et al. ont notamment effectué l’étude suivante : il s’agissait pour les enfants de représenter avec des réglettes valant 10 et des cubes valant 1, des nombres donnés, le score est calculé sur 5.

transcodage, numérique, nombre, développement

Les enfants testés avaient moins de 5 ans, c’est-à-dire qu’il n’avaient pas encore eu d’apprentissage formel. L’étude s’est donc faite avant que l’enfant n’aie appris les règles.

Un exemple d’étude : Jarlegan, Fayol & Barouillet (1996)


Un exemple d’étude : Jarlegan, Fayol & Barouillet (1996)Cette étude a été menée chez des enfants en CE1. On demandait aux enfants d’effectuer des transferts d’un nombre d’un code à un autre. Sous formes analogiques, il s’agissait de formes géométriques (un carré de 1 cm d’arrête pour 1, un rectangle 1cm * 10 cm pour 10. Le but était de voir comment les enfants passent d’un système de code à un autre. Tous les types de nombres ont été utilisés, les difficultés sont nées principalement avec les chiffres de dizaines complexes (11, 13,…)

Comparaison des nombres


comparaison-des-nombres.jpgPour comparer deux nombres, l’ordinateur, par exemple pour le cas de 71 et 65, compare les dizaines et peut comparer tout de suite, sans s’occuper des chiffres de l’unité. Chez l’homme, il semblerait que la comparaison se fasse par l’effet de distance déjà cité avec l’accumulateur de Meck et Church (avant dernier paragraphe), 1983. Les résultats du tableau ci-contre représentent les temps mis pour résoudre la comparaison entre deux paires de comparaison.

Cet effet de distance à fait l’objet de tentatives d’explication, notamment par la Ligne numérique.

La ligne numérique


Il s’agit d’une métaphore utilisée dès les années 60 pour essayer d’expliquer les représentations numériques. Cette ligne « représenterait les nombres de façons continue » (Moyer et Landaner, 1967 ; Restle, 1970). Il s’agit d’une ligne orientée pour laquelle la différence de distance entre 1 et 10 serait la même que celle entre 10 et 100, entre 100 et 1000,… On dit qu’elle est orientée, et compressée, et ressemble à s’y méprendre à une échelle logarithmique de base 10, mais s’en distingue de par les portions élémentaires au sein de chaque catégorie.

Moyer-et-Landaner-1967--Res.jpg

Cette ligne expliquerait notamment l’effet Stroop de transformation automatique en quantité : si on présente deux chiffres à un sujet et qu'on lui demande lequel est écrit plus gros que l'autre, il donne facilement la réponse, si le chiffre écrit en gros est supérieur à celui écrit en petit (par exemple, 9 écrit en gros et 1 écrit en petit -> la réponse est alors "9"). Par contre, le temps de réponse est allongé, et les réponses ne sont pas toujours correcte (dans une telle tâche, il faut répondre le plus vite possible), si le nombre écrit en gros est inférieur en quantité (par exemple, 1 écrit en gros et 9 écrit en petit -> la réponse est alors "1")

On observe un phénomène d’interférence, comme celui que l’on peut observer lorsque l’on demande au sujet de dénombrer les chiffres à l’intérieur d’un carré. S’il y a trois chiffres 4, ils auront tendance à cause de l’automaticité à répondre « 4 ». Il faut inhiber la représentation automatique pour répondre correctement.
   

Mots-clés : chaîne numérique, codage, nombre, écrit, numérique



Ajouter votre commentaire

Attention, ce site n'est pas un site de psychothérapie en ligne! Avant de commenter, veuillez consulter ces conseils.
Seul les utilisateurs enregistrés peuvent commenter un article.
Aucun commentaire posté
 
< Précédent   Suivant >